SOME COBALT CARBONYL COMPLEXES OF LIGANDS CONTAINING THE ECH_2E (E = Sb, As, P) MOIETY

TAKAHARU FUKUMOTO, YOSHIO MATSUMURA and ROKURO OKAWARA Department of Applied Chemistry, Osaka University, Suita, Osaka (Japan) (Received September 4th, 1973)

Summary

Complexes of the type, $Co_2(CO)_6[(R_2E)_2CH_2]$ (R = CH₃, C_2H_5 , *p*-CH₃C₆H₄; E = Sb. R = C₆H₅; E = Sb, As, P) were prepared by the reaction of dicobalt octacarbonyl with the corresponding ligands in benzene at room temperature. Treatment of these complexes with a diarylacetylene in refluxing benzene displaced two bridging carbonyl groups to give complexes of the type, $Co_2(CO)_4(R'_2C_2)[(R_2E)_2CH_2]$ (R' = C₆H₅, *p*-CH₃C₆H₄), which also were obtained from the reaction between $Co_2(CO)_6(R'_2C_2)$ and $(R_2E)_2CH_2$. The structures of these derivatives are discussed on the basis of their infrared spectra.

It was found from the PMR spectra in CH_2Cl_2 at room temperature that the coordinated stibine ligand in these complexes can be easily replaced by either a free phosphine or arsine ligand, while the coordinated arsine ligand is replaced only by a free phosphine.

Introduction

We have reported [1,2] recently concerning the behavior of $(R_2Sb)_2CH_2$ in substitution reactions with mononuclear metal carbonyls. These di-tertiary stibines tend to bridge between two metal carbonyls. Although tertiary stibine derivatives of dicobalt octacarbonyl, $[Co(CO)_3(SbR_3)]_2$ ($R = C_2H_5$, i- C_3H_7 , C_6H_5) and $\{Co(CO)_3[Sb(C_6H_5)_3]_2\}$ { $Co(CO)_4$ } have been briefly reported [3, 4], the reaction of $Co_2(CO)_8$ with di-tertiary stibines has not yet been described.

In this paper, we report the preparation and properties of new bis(diorganostibino)methane derivatives of cobalt carbonyls, together with the phosphine and arsine analogs. The replacement reactions of the coordinated stibine, arsine or phosphine in these complexes by free ligands, $[(C_6H_5)_2E]_2CH_2$ (E = Sb, As, P) as observed by means of the PMR spectra will be also described.

Experimental

All the reactions and subsequent manipulations were carried out under a nitrogen atmosphere. Solvents were purified by standard methods, and nitrogen was bubbled through prior to use.

IR spectra were recorded on a Hitachi 225 spectrophotometer, equipped with gratings. The PMR spectra were measured on JEOL model 3H-60 and PS-100 spectrometers operating at 60 and 100 MHz, respectively, using TMS as an internal standard. Mass spectra were obtained on a JEOL model JPS-1S mass spectrometer.

The compounds $Co_2(CO)_8$ [5], $(R_2Sb)_2CH_2$ ($R = CH_3$ [6], C_6H_5 [7], *p*-CH₃C₆H₄ [1]) and $[(C_6H_5)_2P]_2CH_2$ [8] were prepared by literature methods, and $[(C_6H_5)_2As]_2CH_2$ was prepared similarly to $[(C_6H_5)_2P]_2CH_2$. We have synthesized colorless bis(diethylstibino)methane in a manner similar to the preparation of bis(di-*p*-tolylstibino)methane [1]: $[(C_2H_5)_2Sb]_2CH_2$ [b.p. 93–95°/ 1.5 mmHg (lit. [9] b.p. 103–105°/0.8 mmHg), PMR (neat); δ (SbCH₂ Sb) 1.05 s, δ (SbC₂ H₅) 1.14–1.50 m ppm]; the derivative [Br₂ (C₂ H₅)₂ Sb]₂ CH₂ [m.p. 84–85°, (Found: C, 15.59; H, 3.25. C₉ H₂₂ Sb₂ Br₄ calcd.: C, 15.59; H, 3.20%), PMR (CHCl₃); δ (SbCH₂ Sb) 4.17 (s, 2H), δ (SbCH₂ CH₃) 3.19 (q, J 8 Hz, 8H), δ (SbCH₂ CH₃) 1.64 (t, J 8 Hz, 12H) ppm].

Preparation of $Co_2(CO)_6[(R_2E)_2CH_2]$ ($R = CH_3$, C_2H_5 , $p-CH_3C_6H_4$; E = Sb. $R = C_6H_5$; E = Sb, As, P)

A mixture of $Co_2(CO)_8$ (1.6 g; 4.7 mmole) and $[(CH_3)_2Sb]_2CH_2$ (1.5 g; 4.7 mmole) in benzene (80 ml) was stirred at room temperature until the evolution of carbon monoxide had stopped (ca. 2 h). The solvent was removed under reduced pressure. The residue was dissolved in a small amount of dichloromethane and chromatographed on an alumina column. The major red-brown band was eluted from the column with dichloromethane/petroleum ether. The solvent was removed under reduced pressure, and the residual solid was recrystallized from dichloromethane/n-hexane to give red crystals of $Co_2(CO)_{6^-}$ {[(CH₃)₂Sb]₂CH₂} (2.1 g; 75% yield). The other stibine and phosphine complexes, and the arsine complex (I) were prepared in a similar manner. In the arsine complexes, the column chromatography and recrystallization from benzene/n-hexane gave complex (II) shown in Table 1. The complexes (I) and (II) exhibit different IR spectra as Nujol mulls, but their PMR spectra and solution IR spectra were found to be identical as shown in Tables 1 and 2.

Preparation of $Co_2(CO)_4(R'_2C_2)[(R_2E)_2CH_2]$ ($R = CH_3$, C_6H_5 ; E = Sb; $R' = C_6H_5$, $p-CH_3C_6H_4$, $R = C_2H_5$, $p-CH_3C_6H_4$; E = Sb; $R' = C_6H_5$. $R = C_6H_5$; E = As, P; $R' = C_6H_5$)

A mixture of $Co_2(CO)_6\{[(CH_3)_2Sb]_2CH_2\}$ (1.1 g; 1.9 mmole) and $C_6H_5C\equiv CC_6H_5$ (0.35 g; 2.0 mmole) was heated in refluxing benzene (40 ml) for 2 h. The solvent was removed under reduced pressure. The residue was dissolved in dichloromethane and chromatographed on an alumina column using dichloromethane/n-hexane as the eluent. The black solid obtained by the removal of the solvent was recrystallized from dichloromethane/n-hexane to give black crystals of $Co_2(CO)_4[(C_6H_5)_2C_2]\{[(CH_3)_2Sb]_2CH_2\}$ (0.87 g; 67%

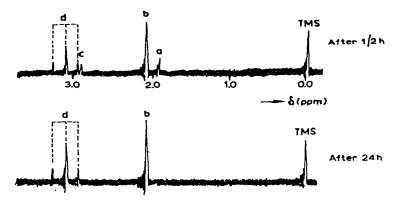
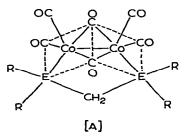


Fig. 1. The PMR spectra in the region of methylene protons for the reaction of $Co_2(CO)_6$ -{[(C₆H₅)₂Sb]₂CH₂} (0.1 mmole) with [(C₆H₅)₂P]₂CH₂ (0.1 mmole) in CH₂Cl₂ (0.3 ml) at room temperature after 1/2 and 24 h. (a) $Co_2(CO)_6$ {[(C₆H₅)₂Sb]₂CH₂ }, (b) [(C₆H₅)₂Sb]₂CH₂, (c) [(C₆H₅)₂P]₂CH₂, (d) $Co_2(CO)_6$ {[(C₆H₅)₂P]₂CH₂ }.

yield). The same compound also was obtained by heating the mixture of $[(CH_3)_2Sb]_2CH_2$ and $Co_2(CO)_6[(C_6H_5)_2C_2]$ in refluxing n-hexane. The other complexes were prepared in a similar fashion.

Properties and yields of all the new cobalt carbonyl complexes thus obtained are summarized in Table 1. These complexes are stable in air as solids but they decompose slowly in solution. IR data are listed in Table 2.


The ligand substitution reactions of the complexes

The progress of the reactions was followed by measuring the PMR spectra in the region of the methylene protons of the ligands. Typical spectra are shown in Fig. 1. The other substitution reactions were similarly carried out.

Results and discussion

All the complexes shown in Table 1 are monomeric in dichloromethane. The solution infrared spectra (Table 2) of the complexes $Co_2(CO)_6[(R_2E)_2CH_2]$ exhibit three very strong terminal, and two strong bridging carbonyl stretching bands with fairly large separation. The compounds are assigned structure [A] on the basis of their infrared spectra which are similar to that of $Co_2(CO)_6$ -

 $[(CH_3)_2AsC=CAs(CH_3)_2CF_2CF_2]$ [10] which is known from X-ray studies [11] to be of that structural type.

E = Sb, $R = CH_3$, C_2H_5 , C_6H_5 , p- $CH_3C_6H_4$ E = P or As, $R = C_6H_5$.

(continued on p. 443)

Compound		Yield (%)	Color	M.p. (decomp.) (°C)	Analysis Found (caled.) (%) C H	pun	Mol. wt. Found ^c (caled.)	PMR (ppm) ^d 6(ECH ₂ E)
Co2(CO)6[(R2E)2CH2]	E)2 <i>CH</i> 2]							
E = Sb R	$R = CH_3^{d}$	76	red	129-130	21.85 (21.89)	2.38 (2.34)	624 (604)	1.42 ^e
Sb	C ₂ H ₅	47	ređ	104-105	27.11 (27,31)	3.53 (3.36)	683 (680)	1.02 <i>f</i>
Sb	C6H5	86		121-123	43.67 (43.71)	2.59 (2.60)	851 (852)	1,92
Sb	р-СН ₃ С ₆ Н4 ^b	12	red- brown	114-116	45,50 (45,34)	3.57 (3.30)	944 (936)	1.788
As	C ₆ H ₅ (I)	67		138-140	48.85 (49.11)	2.83 (2.93)	751 (758)	2.61
As	C ₆ H ₅ (II)	11	orange	143-145	49,16 (49,11)	2.90 (2.93)	749 (758)	2.61
¢,	C ₆ H ₅	50	orange	158-160	55,41 (65,55)	3.32 (3.31)	657 (670)	3,06 <i>h</i>

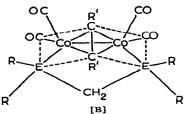
properties and yields for $c_{o_2}(c_0)_6[(r_2 b)_2 c H_2]$ and $c_{o_2}(c_0)_4(r_1' c_2)[(r_2 b)_2 c H_2]$

TABLE 1

•

	1,53 ⁱ	1.50 ^j	*	2,20	2.22	2.09 <i>m</i>	2.87	3.22 ^h
	732 (726)	741 (754)	781 (782)	974 (974)	953 (1016)	1047 (1030)	879 (880)	818 (793)
	3.44 (3.33)	3.64 (3.74)	4.22 (4.13)	3.36 (3.31)	3.66 (3.62)	4.04 (3.91)	3.62 (3.66)	4.34 (4.07)
	37.94 (38.06)	39.53 (39.83)	41.24 (41.47)	52.76 (53.02)	63.31 (63.93)	64.34 (54.80)	58,65 (58,66)	65.37 (65.17)
	179-180	162-163	113-114	162-164	194-195	195-197	6 11- 71	205-207
	black	black	black	black	black	black- purple	brown	brown
	67	81	37	65	75	72	80	84
	$\mathbf{R}' = \mathbf{C}_{0} \mathbf{H}_{5}^{\mathbf{a}}$	р-СН3С6 Н4	C ₆ H ₅	C ₆ H ₅	p-CH ₃ C ₆ H ₄	C ₆ H ₅	C ₆ H ₅	C ₆ H ₅
Co2 (CO)4 (R ¹ ₂ C ₂)[(R ₂ E) ₂ CH ₂]	R = CH ₃	CH ₃	C ₂ H ₅	C ₆ H ₅	C ₆ H ₅	p-CH3 C6H4	C ₆ H ₅	C ₆ H ₅
Co2(CO)4(E = Sb	Sb	Sb	Sb	Sb	Sb	As	۵.

^a The molecular ion followed by successive loss of six and four carbonyl groups was observed from the mass spectra, respectively. ^b 1/3 CH₂Cl₂ solvate. ^c Measured using a vapor pressure osmometer in CH₂Cl₂ at 25^o (concn, 0.5–1.0 wt%). ^d Measured in CH₂Cl₂ unless otherwise stated, $[(C_6H_5)_2Sh]_2CH_2$: $\delta(SbCH_2Sb)$ 2.07, $[(R_2Sb)_2CH_2]$ (R = CH₃, p-CH₃C₆H₄); see rof. 1, $[(C_6H_5)_2Aa]_2CH_2$: $\delta(AsCH_2As)$ 2.62, $[(C_6H_5)_2Bb]_2CH_2$: $\delta(PCH_2)$: $\delta(AsCH_2As)$ 2.62, $[(C_6H_5)_2Bb]_2CH_2$: $\delta(PCH_2)$: $\delta(PCH_2)$ 2.86(t, J(P-H) 1 Hz), $(p-CH_3)_2C_5$: $\delta(C-CH_3)$ 2.35, $ppm.^c$ In CD₃COCD₃, $\delta(SbCH_3)$ 1.36. \tilde{f} $\delta(SbCH_3)$ 1.36. \tilde{f} $\delta(SbCH_3)$ 1.36. \tilde{f} $\delta(SbCH_3)$ 2.28. \tilde{h} Triplet (J(P-H)) 10 Hz), $I_04.^J \delta(SbCH_3)$ 1.04. $J \delta(SbCH_3)$ 1.04. $J \delta(SbCH_3)$ 2.28. m In CDCl₃, $\delta(C-CH_3)$ 2.35. \tilde{h} Triplet (J(P-H)) 10 Hz), $I_04.^J \delta(SbCH_3)$ 1.04. $J \delta(SbCH_3)$ 2.28. m In CDCl₃, $\delta(C-CH_3)$ 2.35. \tilde{h} Triplet (J(P-H)) 10 Hz), $I \delta(SbCH_3)$ 1.04. $J \delta(SbCH_3)$ 2.26. m In CDCl₃, $\delta(C-CH_3)$ 2.36. m In CDCl₃, $\delta(C-CH_3)$ 2.30. m In CDCl₃, $\delta(C-CH_3)$ 2.30. m In CDCl₃, $\delta(C-CH_3)$ 2.30. m In CDCl₃, $\delta(C-CH_3)$ 2.36. m In CDCH₃ 2.00. m In CDCl₃ 2.00. m In CDCl₃, $\delta(C-CH_3)$ 2.30. m In CDCl₃, $\delta(C-CH_3)$ 2.30. m In CDCl₃, $\delta(C-CH_3)$ 2.30. m In CDCl₃ 2.00. m


Compound				Terminal	h(CO)		Bridge	µ(CO)
Co,(CO)6	Co, (CO) 6 [(R, E), CH,]							
E=Sb	$R = CH_3$		Nujol CHCl ₃	2034(10) 2041(9)	2000(10),1989 (9) 2008(10)	1969(10),1947(9) 1983(10)	1805(9) 1821(5)	1764(9) 1765(6)
qS	C ₂ H ₅		Nujol CHCl ₃	2029(10) 2039(8)	1998(9),1989(9) 2006(9)	1976(10),1950(8) 1980(10)	1804(9) 1819(4)	1764(9) 1765(5)
dS	C ₆ H ₅		Nujol n-hexane	2040(8) 2048(8)	2014(9) 2017(9)	1976(10) 1995(10)	1831 (7) 1844 (6)	1766(8) 1783(4)
Sb	p-CH ₃ C ₆ H ₄		Nujol n-hexane	2039(9) 2046(10)	2010(10) 2016(10)	1979(10) 1993(10)	1819(7) 1844(7)	1774(8) 1784(5)
٨s	C ₆ H ₅ (I)		Nujol Cyclohexane	2050(9) 2049(9)	2016(10),2004(10) 2017(10)	1969(10) 1992(10)	1832(9) 1841 <i>(</i> 7)	1770(9) 1789(4)
As	C ₆ H ₅ (II)		Nujol Cyclohexane	2047 (7),2043(8) 2049 (9)	2005(10),2000(10) 2017(10)	1985(9),1975(9) 1992(10)	1810(8) 1842(7)	1795(10) 1790(4)
64	C ₆ H ₅		Nujol Cyclohexane	2047 (7), 2042(8) 2049 (8)	2005(10),2000(10) 2017(10)	1985(9),1974(9) 1991(9)	1810(7) 1842(6)	1799(10) 1793(4)
Co2(CO)4(Co ₂ (CO) ₄ (R ¹ ₂ C ₂)[(R ₂ E) ₂ CH ₂]							
$\mathbf{E} = \mathbf{S}\mathbf{b}$	$R = CH_3$	$\mathbf{R}' = \mathbf{C}_{6} \mathbf{H}_{5}$	CHCI ₃	2021 (8)	1992(10)	1965(7)		
Sb	CH ₃	<i>p</i> -CH ₃ C ₆ H ₄	CHCl ₃	2020(8)	1990(10)	1963(7)		
Sb	C ₂ H ₅	C ₆ H ₅	CHCl ₃	2018(8)	1988(10)	1963(7)		
Sb	C ₆ H ₅	C ₆ H ₅	CHCI ₃	2026(8)	1999(10)	1973(7)		
Sb	C ₆ H ₅	<i>р</i> -СН ₃ С ₆ Н ₄	CHCI ₃	2024(8)	1996(10)	1970(7)		
Sb	$p-CH_3C_6H_4$	C ₆ H ₅	CHCl ₃	2024(8)	1997(10)	1970(7)		
As	C ₆ H ₅	C ₆ H ₅	CHCl ₃	2025(9)	(01)6661	1970(10)		
d.	C ₆ H ₅	C ₆ H ₅	CHCI ₃	2025(9)	1999(10)	1972(10)		

 $^{\alpha}$ Values are listed in cm $^{-1}$ and relative intensities are given in parentheses.

TABLE 2

In the solid state, all stibine complexes and the arsine complex (I) would have the same structure [A] as that in solution, since the pattern of carbonyl stretching bands is similar to that in solution and a difference in frequencies for the two bridging carbonyls is still large. However, for the arsine complex (II) and the phosphine complex, whose solid IR spectra exhibit a much smaller frequency separation of the bridging carbonyl bands, a possibility that the ligand $[(C_6H_5)_2E]_2CH_2$ (E = As, P) is chelating to one cobalt atom or bridging intermolecularly to form either a dimeric or polymeric structure may not be excluded.

In the infrared spectra (Table 2) of the complexes $Co_2(CO)_4(R'_2C_2)$ -[(R_2E)₂CH₂], only terminal carbonyl stretching frequencies were observed. These spectra resemble those of disubstituted phosphine derivatives of the type $Co_2(CO)_6$ (acetylene) such as $Co_2(CO)_4[(C_6H_5)_2C_2]$ [[(C_6H_5)_3P]₂] [12] and $Co_2(CO)_4[(C_6H_5)_2C_2]$ [[(C_6H_5)_2PC₂CH₃]₂] [13]. Thus structure [B] containing both (R_2E)₂CH₂ and R'_2C_2 bridging may be proposed for our complexes Co_2 -(CO)₄(R'_2C_2)[(R_2E)₂CH₂], as shown below.

 $E = Sb, RR' = CH_3, C_6H_5 \text{ or } p-CH_3C_6H_4; C_2H_5, C_6H_5; C_6H_5, C_6H_5 \text{ or } p-CH_3C_6H_4;$ $p-CH_3C_6H_4, C_6H_5.$ $E = P \text{ or } As, RR' = C_6H_5.$

The position of the bands for the carbonyl stretching frequencies of the phenyl stibine complexes of the type [A] and [B] is very similar to that for the arsine or phosphine analogs. In a series of the stibine complexes, the position of the carbonyl stretching bands shows the slight higher shift with the decrease of the σ -donor property of the organic groups attached to the antimony atom. The carbonyl stretching bands of the complexes $Co_2(CO)_4(R'_2C_2)$ -[$(R_2E)_2CH_2$] are shifted to lower frequencies (ca. 20 cm⁻¹) than those of the complexes $Co_2(CO)_6[(R_2E)_2CH_2]$. This may be due to the weaker π -acceptor property of the acetylene groups in comparison with the carbonyl groups.

The methylene protons $(EC\underline{H}_2E; E = Sb, As)$ and the methyl protons $[(C\underline{H}_3)_2Sb, (p-C\underline{H}_3C_6H_4)_2Sb$ or $(p-C\underline{H}_3C_6H_4)C]$ of the complexes described in this paper are expected to be stereochemically nonequivalent in the proposed structures [A] and [B], but the PMR spectra of their protons show only a single resonance as shown in Table 1. The PMR spectrum of $Co_2(CO)_4$ - $[(p-CH_3C_6H_4)_2C_2]\{[(CH_3)_2Sb]_2CH_2\}$ is unchanged even at temperatures down to -50°. This would suggest that these complexes are non-rigid in solution on the PMR time scale.

From the PMR spectra in CH_2Cl_2 at room temperature, it was found that the coordinated stibine in the complexes can be easily replaced by either the free phosphine or the arsine, while the coordinated arsine can be replaced by the free phosphine, as shown below and in Fig. 1.

$Co_2(CO)_6 \{ [(C_6H_5)_2E]_2CH_2 \} + [(C_6H_5)_2E']_2CH_2 \rightarrow$ $Co_2(CO)_6[(C_6H_5)_2E']_2CH_2] + [(C_6H_5)_2E]_2CH_2$

(E = Sb; E' = As or P. E = As; E' = P)

Substitution by the free phosphine proceeded to completion in 24 h. Similar substitutions also were observed for the complexes $Co_2(CO)_4[(C_6H_5)_2C_2]$ - $\{[(C_{\epsilon}H_{\epsilon}), E], CH_{\epsilon}\}$ (E = Sb or As). These facts suggest that the nucleophilicities of the ligands to the cobalt atoms decrease in the following sequence: $[(C_6 H_5)_2 P]_2 CH_2 > [(C_6 H_5)_2 A_5]_2 CH_2 > [(C_6 H_5)_2 Sb]_2 CH_2$. This trend is consistent with the usually observed order of nucleophilicities of the Group VB elements.

Acknowledgement

The authors are grateful to Prof. Clyde R. Dillard of Brooklyn College for improving our manuscript and to Mr. K. Kometani for his contribution to some of the experimental work.

References

- 1 T. Fukumoto, Y. Matsumura and R. Okawara, J. Organometal. Chem., 37 (1972) 113.
- 2 T. Fukumoto, Y. Matsumura and R. Okawara, Inorg. Nucl. Chem. Lett., 9 (1973) 711.
- 3 W. Hieber and W. Freyer, Chem. Ber., 93 (1960) 462.
- 4 D.J. Thornhill and A.R. Manning, J. Organometal. Chem., 37 (1972) C41.
- 5 R.B. King, Organometallic Synthesis, Vol. 1, Academic Press, New York, 1965, p. 98.
- 6 Y. Matsumura and R. Okawara, Inorg. Nucl. Chem. Lett., 7 (1971) 113.
- 7 Y. Matsumura and R. Okawara, J. Organometal. Chem., 25 (1970) 439.
- 8 W. Hewertson and H.R. Watson, J. Chem. Soc., (1962) 1490.
- 9 H.A. Meinema, H.F. Martens and J.G. Noltes, J. Organometal. Chem., 51 (1973) 223.
- 10 J.P. Crow and W.R. Cullen, Inorg. Chem., 10 (1971) 2165.
- 11 W. Harrison and J. Trotter, J. Chem. Soc. A, (1971) 1607. 12 U. Krüerke and W. Hübel, Chem. Ber., 94 (1961) 2829.
- 13 H.A. Patel, A.J. Carty and N.K. Hota, J. Organometal. Chem., 50 (1973) 247.